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APSTRACT

A unified treatment of radiative corrections to a class of scattering experi-
ments is presented. The experiments considered are those in which either (but not both)
the scattered or recoil particle is detected. The recoil kinematics are properly treated
and the calculation is simplifiad by retaining only terms of logarithmic order. The ge-
neral results are applied to specific practical examples in which radiative corrections
are likely to be important. Except possibly for the case of Compton scattering with
nearly maximum momentun traacfer, the errors are estimated to be less than 2% of the

cross section,
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I, INTRODUCTION.

Calculations in quantum electrodynamics, while straightforward in principle,
are often laborious; and in many cases the results have not been put into a convenient
form for application to specific experiments. If one does not insist upon a complete
calculation (to a given order of ¢¢), it should be possible to pick out the dominant
cortributions which may then be simpler to calculate, That this is true has been made
clear in recent years by work in which the infrared contributions are singled out for

]
12,5, 4. The physical reason that these contributions are the most

special considerations
important at very high energies is well-lmown. They arise from the lerge scale distri-
butions of the electromagnetic field, which should be classically describable. At very
high energies these ficlds are strongly Lorentz contracted in the region transverse

to the moving particles. They camnot e quickly rearranged when a charged particle is
deflected in a scattering process; and as a result, radiation pust be emitted (brems—
strahlung) and together with that there nust be a strong radiative reaction tending to
suppress the elastic part of the scattering cross section. Thig feature of the radiative
corrections has, of course, beon well-known for many years, but its importance from a
practical computational standpoint has perhapjs not always been so well appreciated.
These general ideas are discusced in more detail in Ref 1, It is the purpose of the
present paper to exploit them for the calculation of radiative corrections to a specific

class of scattering expsriments.

In this paper the radiative corrections will be separated into two parts,
which will be called respectively the'external radiative corrections" and the "internal
radiative corrections”"., The distinction arises because in the scattering process the
current density of the interacting systom can be split up in a natural way into two
parts : the first pert iz the "extornal current", which is specificd entirely by the
momenta and spin states of the initial and final charged particles; the "internal
current" is the residue, which depends on the specific details of the scattering inter-
action. To be more precise, the extcrnal radiative contribution is obtained by conside-
ring emission and absorption of photons (real or virtual) from external lines. By them-
selves these contributions would not corresjyond to a conscrved current because the

scattering matrices which they multiply would be shifted off the mass shell due to



their dependence upon k, the momentum of the photon. The external radiative correction
ig by definition the contribution which is obtained when this particular k dependence
is neglected. Since these corrections are associated mainly with long wave-length (in-
frared) photons, this is a good approximation if the scattering amplitude does not have
a strong dependence on k. The residue from this Jpproximation together with the contri-
butions in which a photon terminates on an internal linc is then called the internal
radiative correction : it clearly depends on the precise details of the scattering
process. On the other hand, tho external radiative corrections are independent of de-
tails. Turthermore, if we are willing to estimate them by considering only terms of
logarithmic order, they may be approxzimated with very little labor. Since the neglectied
terms of order unity must be multiplied by (& /7() to obtain the fractional error, the
error nade in this estimate is likely to be only of the order of magnitude of one or
two percent of the cross scction. The throwing away of terms of order unity is of course
not unique, and we frequently siuplify logarithmic terms by maling changes of order )
unity, (Sometimes temms of order unity are retained in the results if they are well-
known : for example, those arising from an elcctron vertex are retained). An important
feature of this cstimate is that the result factorizes; i.e. the correction can be
zpressed as a factor depending oaly on the external momenta tines the wuncorrected
cross section. It is of course impossible to_give a general discussion of the internal
radiative corrections; however, in many practical ezamples one can give arguments that
they are not important relative to the dominant external radiative corrections. Of
course, in a high precision scattering experiment (precision of order one percent) it
would be necessary to give a complete calculation of the radiative corrections, Even
in such a situation it would probably be of value to split the contributions in the
suggested way. The main reascn for this isg that the external corrections contain all
the infrared divergence, which can be cvaluated explicitly once and for all, The remai-

ning part of the calculation nced then have no artificial infrared cut-off,

In the present paper, we shall present a foirly complete calculation of the
external radiative corrcctions for some typical scattering cxperiments. The aim is to
consider o gencral situation in which cither the incident perticle or the target
particle is detected; coincidence cxperiments are not considered. The classic calcula-

tion of this type refers to an cxperiment where the particle is detected at a preoisely
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defined angle but with e spread in possible energies. In current cxperiments the momen-
tunm spectrum of the scattered particles is also of interest. If the kinematics leads

to a rapid variation of elastic scattering energy with angle, another type of experiment
- precisely defined momentum with spread in angles - is possibleso Rodiative corrections
to these three types of experiment will be discussed in a unified wey herc. Although the
experimental conditions envisaged may be somewhat idealized, it is hoped that the prin-
ciples will be sufficiently well illustrated that the results may be extended to more
realistic experimental situations. We do not wish to specialize to a particular choice
of projectile and target; however, in order that the correction be meaningful compared
to its error, we imposc the restriction that the incident particle be extremely relati-
vistic and suffer a momentum transfer which is large compared with its rest mass6. The
principal difficulty that makes neceszary a new calculation is the fact that recoil
effects may becone important in the general situation. Thus additional terms arise dyna-
mically from the fact that the reeoiling narticle may possess a charge and kinematically
from the fact that the phase space is altered. Thus, if the scatiercd particle has an
encrgy loss € relative to clastic scattering, the energy carried off by an additional
unobserved photon will not be &, and it will in fact depond upon the direction of its
emission, The integration over the phase space of the unobserved photon is the main
source of difficulty in maling a complite calculation. There is of course no difficulty
in principle, but if we have tho cim of doing the calculation for a completely general
situation and presenting the result in a convenient form for applications, the calcula-
tion must be carcfully arronged to achieve this purpose. We omphasize again thot this
calculation is made feasible by the fact that we are interested only in obtaining the
dominant logarithmic terms associated with the external radiative corrections. A com-

=

plete calculation would be nany times more difficult.

The paper is organized in the following way. In Scction II are presented the
principal featurcs of the calculation, while some of the finer points are relegated to
the Appendices., Section III contains some discussion of the crrors made in neglecting
the internal radiative corrections and considers some special features of particular
scattering experiments. In Section IV the results are specialized to various experiments
in which the radiative corrections are important. Some attempt was made to keep Section
IV self-contained; but an experimuntalist may find it of value to refer also to Section
I1a, where the "experimental conditions" are defined. Some of the nccessary notation is

also defined in Section I1I,
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IT, CALCULATION OF THE EXTERWAL RADIATIVE CORREGTIONS,

We want to review and extend some of the considerations of Ref.1. concerning
the extornal radiative corrections. Suppose a real or virtual photon of momentum k is
enmitted from an incoming chorged partizle of momentum p. For definiteness, assume the
charged particle has spin one-half; the corresnonding result for zero spin will be ob-
vious by inspsction. The matriz clement asscciafed with this enission will have the

7
form '

The dots indicate a basic factor in the matbtriz clemont which we nced not consider expli-
citly in computing the externcl radiztive corrections. It is the sane factor that woull
occur in the matrixz element without photon cmissior, except that the uouentum argument

p is changed to p - k. In fact, the rule for caleulating the cxternal radiative corrcc-
tions is to neglect the k-dependcuce of this basic factor; by definition, the correctiom
to this approximation is included in the inturnal rediative corrcctions as it depends on
the specific details of the interaction. On the right side of (2.1) the factor corros-

ponding to the emission of a photon aprears as a sum of two torms; the first is

{2p-K)ee

. (2.1a)
P kz— 2 kep

(convection term)

This term, wvhich is a simple factor tiues the original metrix eloment, is independent
of the particles spin., The infrarcd divergent contridbutions, as well as some ultraviolet

divergences, arise from thc convection terms. The othor teorm in the emission factor is

-5 (Y5 ¢ |
R e (2.1h)
k= 2 kep

(sTin term)

This depends explicitly on the Dirac motrices, and hence it cormot o written as a

simple factor times the original matrix element. However, it will be scen later that
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the largest (i.c. logarithmic in E/m) contributions which arise from the spin term can
also be reduced to a simple factor. If the photon is abgorbed rother than emitted, k
must be replaced by -k in these cxpresgions. For absorption of a photon on an outgoing

charged particle, the corresponding terms are :

—S§¢£ﬂ—:-klis~ AP (conveetion torm) (2.2a)
kW -2k.p <

— _% [érﬁ J

W, ——————— e (spin torm) . (2.2b)

H
PP Lo pp

For purposes of calculation it will prove conveniont to gatalog the various
contributions to the external radintive corrections according to wiucther the photons are
emitted or absorbed by the convection or spin part of the curront. The major correction

arises from the convection contribution, which coatains 2ll the infrared divergence. For

virtual photons the convection contribution corrcsponds to both cumission end reabsorption
by a convection term; for real photons it refers to the contribution obtained by squaring
the convection pert of the emission matrix clement. /in important corroction also arises

from the cross tern betwecii convection and spin terms (this is called the spin-convectior

contribution). It is intercsting to note that in the case of clectron scattering from an
external potential trcatcd in Born approximotion all of the ultraviolet divergence is
associated with the convection contribution. This is in spite of the extra powers of k
in the spin terms; tue divergent part of the spin contributions actually turns out to be

zero as a result of the properties of theAX -netrices.,

The external radiative corrections due to virtual photons are now obtained by
summing the contributions from all Feynnan diagrams in which o photon is emitted from
one external line and absorbod by another, together with the wove function renormaliza-
tions. For the convection terms the derivation is given in Ref. 1. and only the notation
and result will be quoted here. Consider an arbitrary process containing a number of

charged incoming and outgoing particles. The ith external line rcpresents a particle
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of charge eZ, and momentum p,; a number 91 distinguishos inconing (O , = -1) and
outgoing (e 1= +1) particles., If the original matrix element for the process is Mo,

the virtual photon convection contribution to this matrix elecment is simply :

‘o B My , (2.3a)
where
— -i2.6, 2.8, a*x “(2p. 8. - k) (2p. B.+k) 2
B = 2. i';aa[ 2,11 AP Bt e
= X P 2 pl .
pairs 8l JoKS=T A K- 2k.piej K 2., Gj
(2.3b)

The sum extends over each pair of externmal lineg. The iufrared divergence is cut off
by the introduction of a smnll photon mass A ; this makes the real and virtual photon
contributions separately convergent before the final caancellation of the infrared diver-

gence,

In Refe 1, the probability for cmitting an unobsecrved soft photon is calecula-
ted under the assumption that recoil ceffects are small. Roughly specking, this wmeans
that the requircnments of cnergy-nomentuwm conscrvation are taken into account in compu-
ting the phasc spacc availcble to the cmitted photon; but changes in the cross section
due to the dependence of the momentum of the recoil particle on that of the photon are
neglected., This is a valid approximation if the experimental conditions arc such as to
assure that only very soft photons cre emitied, and it leads to a demonstration of the
cancelling of the infrared divergence to. all orders of approximation., However, for our
present considcrations such an apnroximation is not justifiod; ond as we shell see,
importent corrections can arise when the kincunctics are treated correctly. Nevertheless,
since it will provide a convenient way for handling the cancelling of the infrored diver—
gence, we give here the probability for ewitting an unobserved soft photon when recoil

is neglected

(2.4n)



where :

4,z 0, /er & ¥ /piu_ p. V2

- Ai g d T ot
= Z 5 J 5 )2\,7\ ) ,  (2.4p)
pairs 8¢ 0 (}{ + A7) k.pi k.pj :

o

and 60 is the uncorrected cross section proportional to MO 2 « The upper linit km
is generally a function of the direction of the photon, depending on the deteils of
the experimental arrangement. In deternining km as a function of direction, it is of
course important not to ignore k in tho overall conservation laws,., If, as is the cose
in the problem under investigation here, km is independent of direction in =mome Lorentz
frame, the integral in (2.4b) may be carried out explicitly. ihen the result is com-

bined with (2.3), the net contribution to the radiative correction is :

2« (Re B +§)do , (2.5a)
where
2 1 2
- z,8.2, 0 j K K
ReB+B.—.Z 17107974, ~2 . - $op..p, Qn-—%gg— -
pairs 297 ? E. E td B P
. i3 4 bid x
1 2
P,
- % S — ‘sz (2.5b)
i7d )

and 2p_ = 1+ x)pi + (1-x)p,. Some unimportont contributions of order unity have been
neglocted. The encrgies Ei' é;) and Ex appearing here hove to be evaluntcd in the Lerentsz
frame in which km ig isotropic. In case porticle i is extrounely rolativistic relative

to particle j (i.e. Pi-Py» By mj), the leading logarithmic contributions to the

summand of (2.5b) may easily be eveluated; the result is ¢

Ly =g g
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Piobs 2p, «p
-4 P2 ~—£§«1- & (u2 - 2p..p.) + %-pn 17 | (2.6)
S J moEy .
i
(when P;P; > o mj)
where €)(ci) =1 or 0 for o0 or o&(i 0. The only contributiona which have toen

neglected arc those of order unity (i.c. terms which remain bounded or +tcnd to zero oo
the various cnorgy ratios become lorge). It is also of sone procticel gignifiennce to
note that (2.6) contains no Spence functions. In fact the calculation has been arranged
in such a manner that all the Spence functions which oceur have arguncnt less than ones
they are thercfore of order unity and cen be ignored. Of courze in o complete calcula~
tion these terms would have to be recovercd; this, however, would be onc of the least
difficultics in doing a complete calculation. The terms multiplying the & function con

7/
result, The last tcrm in both (2.5b) and (2.6) is related to the ultraviolet divergent

occur only when mj>> 1y or mi\% m., wome additional remcorks should be nmade acbcut this
part of the convection contribution. As discussed in the introduction, the approximation
of neglecting k inside the residual matrix element nay thercfore not be terribly well
Justified for this term, In particular applications it is then nccessary to meake a
deteiled study to verify whetherit is justificd to retain this tera in comparison with
other neglccted contributionz. Another term of sinilar order of nagnitude is the vacuum
polarization and it should be put in explicitly whenever it occurs. The only other inpor--
tant logarithumic contributions that are kmown are those associated with the spin-convec-
tion contribution; they will be digcussed below. e now turn to o more detailed discus-
sion of the kinemetical problem and the computction of the cxterncl radiative cerrections

with recoil properly trcated.

(a) Kinenntiral Considorations

We would like to derive the extormal rodiative corrections to a scattering
process in which either (but not both) of the particles is detected. Vhile we do not

wish to specinlize the calculation to any particular physical system, rather idealized
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experimental conditions will be assumed. One of these is that the incident beanm is
perfectly defined; in practice our result would have to be folded into the energy spec-
trum of the incident beam. It is also assumed that the detector spans a well-defined
angular range (9m> 6> 6 min) and momentws range (pmax > ) pnin) and that
the probability for detecting o particle is wniform in this ronge. Threc special cases
will be considered :

a) Angular resolution is sharp and the mouentw: resolution includes elastic
scattering; the result then depends on A P, the naximwi noientun the particle can lose

below its elastic scottering value.
b) The energy spectrun of particles scattered in o fized sunll solid angle.

¢) Sharp noaentun resolution and the angular resolution includes elastic
scattering; the result depends on A © , the difference between the clastic scattering

angle (691 ) and the ainimun detection angle.

Casc ¢) can arise when the elastic scattering momentws has o rapid angular dependence.
As will be evident later, the results for cases a) and c¢) con be deternined by a single

caleulation. Case b) is sinply deteraincd from easc ) by differcntiction.

We shall try to evelunte all integrals for arbitrary valucs of .ass, energy
and nouentun transfer; the results oy then be speciclized later to given choices of
projectile and target. The only restrictions will be thot the incident particle be
extreaely relativistic and that the uouentun transfer be lorge coapared with the uass
of the incident particle. To avoid en awkwerd noucenclaturc, we shall often refer to the
incident particle as an electron and the torget particle as o proton; in fact, this
particular scattering process is one of the major applications of our result. However,
by setting the asses equal, the result will apply equally to cleciron-clectron or
electron-positron scattering. By sctting the nass and chorge of the projectile equal
to zero, we shall obtain the radiative corrections to Coupton scattering, The latter
process has not previously been evaluated for actual experinmental conditions. We do it
here at the expense of omitting some terms of order unity; those terns could of course
be recovered by comparing the present calculation with that of Brown and Feynmans.
(See also the remarks in Section III,a).
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For elastic scattering the electron's initisl and finnl nowmenta are respec-
tively p, and Pz, while those of the proton are D5 and Py The angle of the elastically
scattered electron is 653 and tant of the recoil proton is 634: both of thuse are mea-

sured fron the direction of the incident bean., Furthermore

(2.7)

2 _ 2 _ 2
Po = B 7 2

For scattering with broasctrahlunsg, the Jinel noacuta are priaed. duergy and nolentun

consexvation in the two camop nxo eznrecscd by o

\ N

P, + p. = p3 + p4 (2.00)
c.

+m, = o+t k. {0,80)

p1 £ £ i \ .

Bxperiments in wihich e dncident or torgoet perticiv is Jewvecoct wili be
labelled respuetively I or II with o sabeseript o, b, or ¢ to duiote the type of dutes-
tion, For czonple, Bxperizent ITo ncrns Lhe elcoctron is letolleld 2t o cogle 9:3 with
a nozentun loss sueller thon [Spgu To kaep the discuseiin gencrnl, tne chorge of the
electron is called Z1e and thrt bf the proton Z}e. Unless spoecificol y indicated,

energzies and noucnta are given in the laboratory systeu.

Some iaportant lincactical relat’onships will now be derived and listed.
The first of those are tae cnergy ond nozenta of the final particles as a function of
their direction for clastic seattoring, Vi always assuie conditions such thoet the inei-
dent ard deattered porticle is catruacly aclztiviewtic (E1_§> o, and E3:> n1); then
we easily find
E

o o> [y --ﬁ Y = L (1=cos O (2
B % p ¥ E, /7( with m o= 1+ 5, (1-c0s O ;) (2.9)

and

/

tee/ a0



13.

2 B n, (mz + E:) cos 94

p, = (2.102)
4 2 .2 2
(m2 + E1) - By cos E)4
o (m2 + E1)2 + E12 cosze4
B, ¥ om, PR 5 . (2.10m)
(n2 + 1) - E] cos 64

For each given monmentwia loss of the particle being detected, there cxists a Lorentaz
frane in which the energy of the photon is isotropic. This frame is the center-of-momen-
tun frame of the photon and the unobserved particle. Suppose the four-nmonentun of the
electron is pé, while the corrcsponding elastic scattering valuec is Pze Then the energy

of the photon in the special frame nay be determined from

(o) + )% - nj

~r

' 2 A q
= 2 k.p4 + AT T2 pr-(P1 + P2)'
where ¢
. B o
C()PB = P3 P3 .

For experiuents Ia and Ib, pl is parnllel t9 p., hense :

3 D

e

/
8 p3°\p1 + pz)

34

1]

BN (123l - l}:‘%’ ) (Ia 2nd Ib) (2.11a)
and for Expcrinent Ic :

¥y = pypg sin 05 (B~ 9;) (Tc) (2.111)
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Then
1 - ~ L?“I o~ -
k. W ( JRER ) Y
-~ o~ 1 N i R ~
where W= (k2 + k2)? and EL’]. = (3.;2 + ng)z. Solving for (O, wo find
. X1
O = SN W . (2.11a)

2 -
(1‘12 + 251)-

Also let [ 1 be the neximua velue of ¥ for cither Experiment Ia or Ic. Then it is
interesting to notice the behavior for two situntions, If mg » f] (for exmanmple, if
o, > E1), we have sinaply 0 = ¥ 1/132 and the recoil proton is never rclctivistic
in the spceial frame. On the otacr hand, if I 1 P mg , the recoil proton hos a

non-relativistic velocity in the sp:icial frame for saall X1 and a relativistic velo-
city for largs \61 o It is juct thisc dependcnce of E('J, on k which was neglected in the

calculation of B. For Experinent II, the corresponding exprecssions are :

k.py = & (f% F®) =y ) (2,122)
p4(E1+m2)m2 l . .
¥, = W— ( }p4[ _}p4| ) (IIa and IIb) (2.12b)
¥o = P12 s:i.n@4 (94 -'61'1) (11c) (2.12¢)
AR W (
w = ¥/ 2y,) 2.124)
where
~ [ond L
Eﬁ = (5 + 2)2 .

Again, r2 is the maximua value of ¥ o



Consider next the integrals over the final phase space of the particles, For

the elastic scattering port this is of the form ¢

’ 3 3
d d a 12
WP S S(p +py-ps-0,) (1|5,
7 - 1 TP m P53 =By o
3 %4

R
where R denotes the region of phase space permitted by the detection arrangement. This
expression is invariantly defined, and hence the following analysis can equally well he
perforned in the laboratory or the center of moss coordinote syston; howover, nmost pre-
sent experinents of the type under consideration correspond to the laboratory systen

which will be eiployed here. For the various cxperinents this reduces to

2
p
3 g 2 o
g 15, | (Ia and Ib) (2.13¢)
2 apa |1, |2 (Ic) (2.1%b)
p1E3 P3 ?3 0 c LAY
p,(E, +n,)
2 2
f;(E1 + o, dQ4 IMOJ (IIa and IIb) (2.13¢)
2 4 1¢, |11? (2.134)
p,E, 4 4 1% . .

The inelastic scattering contribution to the observed cross section tckes the fom

3 ! 3 3
JJ d"ps d'py dk (p, + Py = P = B} - k) (ved)
E! E' w

Consider Experiment I. Since the integrand is an invariant, the integration over k and

pa noy be carricd out in any reference frame. For each fixed value of pé, it is conve-
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nient to use that framc in which the photen oncrgy io isotropic; it is snccified by

p1 + p2 - pé = 0., With the aid of the 5,-function, the intesrnl a0y be rceduced to

~n

/7

3 (o
b 28 (aves o,
RTDmy

~ ~
where ¢) and E& are defined in (2.11). The roacining factor in the integrand is to be
eveluated at the appropricte values specificd by the ) ~-function; d{L indicates an inte-

gration over angles in the special froue, :

For Experinents Ia and Ib, we have

d"pl a4, p12 dnl
31 Wt
2 =3
o~ 2
dil,
. 3 3

—=p - Ay, .
32‘% 31

While for Bzperiment Ic, we find

3 2
d p' p, 4 p, d¢
5 = 5 3 #3 sin O} d@i
ol L 35 0
5 3
_ Psdny Ay
E— n .
Py E3 X1

" Note that the kinenotical factors are respectively the sane as in (2.13a) and (2.13Dh);
a sinilar result is true for ixperiment II. 3ince the incident flux foctors are the sane

for elastic and inelastic secattering, the fractionnl corrections from inclastic scatte-
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ring take the forn ¢

Ty

d 3 (Y4 s

__23_’- wkda () / By [2
0 Vi

(Ia, Ic, IIa or IIc) (2.14)

where 1 =1 or 2.

In summary, the colculation is to be carried out in thoe following mnmner,: for eoch
fixed valuc of 6 5 the integrotion over photon angles is to be carried out in the
special Lorentz frame in which the photon energy is isotropic, The result is then to

be integrated with respect to .Ni in order to obtain the desired radiative correction.

(v) Details of the Convection Contributions

It is convenicnt to rearrangce (2,3) into the sua of dircct torms for cach of

the particles ond an interfercnce contceibution :

B = B(1) + B(2) + B(12) (2,15)

where B(1) is the i = 1, j = 3 contribution, B(2) is the i = 2, j = 4 contribution,

and all other terns cre combined into the single expression @

4 ] fon )
2,2, | d'k .(2p1-ki (2p3»1~:)H (2p2+1<f*+ (2p, L). (2.16)

B(12) = - +
4; k2— >\2 1<2-2k.p1 1<2+2k,p3 1:2+2k.p2 k§-2k.p 4

If the two particles are identical, B is symuetric under the interchange of the two
initial or the two final nonenta, but the separate teras in the decomposition do not

have this property.
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Now (2.4) :ust be genoralized for the crwe where recoil is importont. To ncke the
external radiative corrcetion aporoxinction, we neglect all l=depondence in the into-
grands of (2.14) except that appearing in tho convection factors. It should he romcrked
that this approxication involvus neglecting k not only in tho Dirac operator, but also
in the final state Dirac sypinors whirch arc held fixed at their elastic scattering
values, In place of (2.4), we then hove for the resl photon contribution to the obser-

vable cross scction @

20 o (2,172)
where .Pi . .
o T
2uB = i) kSalis . (2.17b)
Jo 0i

We shall always usc the indox i for the detected particle end j for the undetected ona.
Thus, we set i =3, j = 4 for Szperiwnt I and the reverse is true for Ixperinent II.

3t is defincd by :

o= $1(1) +81(2) + 81(12) (2.180)
where
.
si(1) = - <1< L= 1{3,“> (2,18)
47 £ePq *P3
2 / \ 2
2 P 2\
s1(2) = - —2| o A (2.18¢)
& ° !
4% \ k.p, kep) /
o L
o 2,2 p ps p  p
51(12) = = 1.2 W 3K CH 2 (2.184)

2 1 1~ 1
29T y k.p, k.p3 k.p, k)
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AL ~
The difference between B and B' is that in the expression for B all the momenta pé
are approximated by their elastic scattering values p€; in B! the p'2 are functions
of 8 1 through the conservation laws,

In order to make use of the infrared cancellation which has already been

included in (2.5), we rewrite B' in the form :

B' = B+ 8B (2.1%).
where :
~ Pi d\ v o o
B = Qikmg} (2.19p)
0 b1
r, ‘
206 B = Ziijdﬁ {[?SW'] - [fézé']} . (2.19¢)

Y0

Again, i refers to the detected particle in either experiment. In the last of these
equations it is safe to set the photon mass equal to zero because nS/' - g vanishes

for ¥, = 0. In order to agree with the definition of B given in (2.4), it is necessary
for the photon energy Q) to be defined differently when it is associated with S. It is
given simply by 2{i/mj; the square brackets in (2.19c) are to emphasize that k is to
be calculated differently in the two terms. If the experi.iental situation is such that
the undetected particle is non-relativistic in the special Lorentz frame for all k
(i.e., if m§ > Pi)’ (S II\BJmay be neglected and the convection contribution reduces to :

~ Z12 { r / 2{ o a, )
B+ReB = — (Q-!n(m—g-;;;) %9n723+ -—n---z —Pn(m2a2 ) ey -7 fn? __x_é_ S+
Z Z g

hnd

4
- e(.zg__,) - Qage flem) - planfu)]
T2t 582

(Ia and Ic) (2.20a)
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2  [r2) 8 7 22 (Fz
B+ReB = —- [0, {n| -2 "ol (f 200 0 S
T 191“‘.\11112&1)*91 o my §+ 2”192 ’ 24 Teem

2,2, ( F4
+ ~fnv 0n B R 3(21.4 /m ) - (2b /m )7
247 z ¢ (m2F1 Ea 1 ) L P 2%

(1Ia and IIc) (2.20p)

where the following notation has been introduced:

),

8, = PyePg E E3 (1 - cos 63)

n

m, (E4 - m2)

43
- 2 e —")n aj“' * (a'Q' _ mj‘)z -1
) Ny e S 2
[« - = "y
2a
~J Q 2
= -Qn;—z---.- 1 for a£>> m-a (2.21)
" (ay - mi) ~ 2
= 2 el for a, = mn,
2 e R
)
+ 2 % + (a )é-
U i S R O o s Wl
€y = 2 2 B
) 2
2a
y fn —2
2
ny

Anx 801 =2 .

2N
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The approximate form taken for pé is actually valid only for gag> m2. In the non-
relativistic region, ph tends to zero; however, the error made in using the approxima-
tion for all a's is only of ordeg unity. The function Oy is not sinilarly treated since
it multiplies a logarithm of [ 's. In evaluating (2.5) and (2.6), we have used the fact
that the energieslﬁ are the energies of the particles as seen in the rest frame of the
recoiling particle when tﬁs’scattering is elastic. Thus, for Ixperiment I :%’= Py .p4 m,
while for Experiment II : EQ = RQ .p3/m1.

When the energy of the recoil particle can be relativistic in the special
Lorentz frame, & B can make an important contribution. The details of this calculation
are relegated to the Appendix. However, some of the general features will be discussed
here briefly. We recall that each value of the magnitude of jg corresponds to a definite
choice for fhe special Lorentz frame. We see from (2.17) and (2.18), that the angular

integration in the special Lorentz frame involves terms of the form :

. 2 )
A Eron

dﬂ\
1 -
k‘Pé k.pk k.pP‘L.pk ;

. (2.22)

It is necessary to state carefully what this expression means because two different
Lorentz frames are involved. The angular integration in the second term is carried out
in the rest frame of the unobserved recoil particle when the scattering is elastic; the
factors of ﬁ of course cancel out for this term. The angular integration in the first
term is carried out in the special Lorentz frame; for uniformity of notation, we have
set py = p{ and P, = pé. If neither { nor k corresponds to the unobserved particle,

p! and p& are both independent of the direction of k and the integral may easily

evaluated; the result is :

t ! .
21 &2.—?1‘— - —pg—-nﬁ (2.23)
o\ Pi(dk) p, (Vk)

where 2px(.Qk) =(1+x)p + (1 - x)pk, with a similar definition for p!. If L and x

are any combination of 1 and 2, P, equals p; and this integral is identically zero;
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the same is true for £ = k = 1. Under the assumption that the womentun resolution is
good (131)3/p3 &« 1or Ap‘,(/p4 { 1), it can be shown that the remaining terms of this
form (L, k¥ # j) are also unimportant; the details are in the Appendiz.

In case k or 4 corresponds to the unobscrved particle, the corresponding

momentum will depend upon the angular variables in the integration. TFor exzample, in
Experiment I, we have :

kepp =%y

and

Sp.) - ple
Py + Py p;,/-(p4 + O p3) pje k

e

Py« P, = kep} (2.24)

In evaluating the integrals, we are intercsted only in keeping contributions which can
be large under foreseecable cxverimental conditions, If terms of non-logarithmic order
are neglected, the calculation isg relatively casy; the details are given in the Appen~

dix and the results are containcd in the following formula ¢

2 -

Z7 7 2, ]
S S B R R 5 )( (2.25)
2570 | my }

The cnergy spectrum may now be obtained from (2,20) and (2.25) by differcntiation :

4

ds € (.2 2 iy] L oo

. =;—-—-,6p 12Z1&)1+22(292—-Qn (1+ _Z")J 4Z1 22 ..nvt(

3 3 o, i
(2zp. I) (2.262)

ds o o 2" (
ol > ar >
—— = 222 t>2+Z1 [ta(ﬁ—in (1+—-—~——)]-4Z1 22 «in—ts

i, " 773, | 2

(Tixp.II) (24260)
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In the terms arising from & ﬁ' the denominators should be 4313[21 +(m§/2 r;)] rather
than £§;&. However, these terms are important only if Fi )} m?, and in that case the

given approximation is valid.

(c¢) Spin-Convection Contributiona

The convection contributions discussed in the previous subsection are inde-
pendent of the spin of the charged particles., If the particles have spin, additional
terms, such as (2.1b), will appear in the factors for emission and absorption of pho-
tons, These terms depend on the details of the current distribution at somewhat smaller
distances than the convection terms. This is cvidenced hy the oxtra powers of % they
contain, which tend to emphasize the horder photon contributions. However, as will be
seen, the interference between the spin and convection terms has 2 port which is large
(i.e. logarithuic in a large cncrgy ratio) and is independent of the specific details
of the scattering interaction. In contrast to the infrarcd part of the convection terms
which is characterized by an intcgral of the form f dk/:, the spin--convection contri-
bution is characterized by [ dk/E, with an upper cut-off of order E for virtual pho-
tons and AE for real ones; Thus the approzxiuation of neglecting k inside the residual
factor in the matrix elecment is not likely to be as good in the latter case. However,
there scems to be no indication that the corrcction to this anprozimation contains
logarithms of large cnergy retios; this of course does not prevent it from having a

large numerical valuc.

In view of these romarks, the simmificance of the spin-convection contribu-
tions is somewhat uncertain in the general scattering situation. However, they may then
give us some information gabout the order of wagnitude of the errows in the straight
convection approximation. In any case, there are numerous important applications where
the basic scattoring is given quite well by the Born approximetion; the approximation
required can then be studied in detail and they are generally found to be quite ade-
quate. The following analysis will be for Dirac particles only, with no angmalous
moment included. The contributions of the anomalous moment of the proton in electron—

proton scattering will be discussed explicitly in Section III,
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Consider the virtual photons first. If the incident particle has spin one-

half, it contributes the following spin-convection term :

8 M(1 )_ _jfzfi( 343 E(P3) { l_‘<p3"klp1-k)'[ k;ﬁ3] +[ I<1 '1(:] r—‘ (PB"'kipT"k)} u(p1) (2'27)
e ) WP (1°-2k. ps) (1{2-21ch1 )

where [ is the X -matrix opcrator eppearing in the basic scattering matrix element.

In order not to make use of the detailed propertics of r , we wish to arrange the cal-
culation in such a way that X -matrices need not be shifted through it. In fact, if we
restrict our attentiop to logarithmic terms, we will find that it is possible to elimi~
nate the extra 3 -matrices and thus express & M(1) in torms of UO. If the k~dependenc:
of r is neglected, the integration with respcct to k is easily carried out and it lend:

to the result :

ot [ 1
¢ _ f . S
En(1) = —1—‘[_1 3 u(p3)1(1+x)f"[é1,167_|+(1-x)[161,ﬁB_)FZu(pp,

2
px

with 2p (1+x)p1 + (1~x)p3o Now if torms of order m, arc neglected (ultimately in
the cross section they would be of order m /E ), the commutators can be replaced by the

invariant scalar product 2p1.p2 and we flnd

Su(1) = o c()M, , (2.282)
with 1
2 2
Z z 2D, oD
0(1) = . p1°p3 .51.?2{._ ’-‘—_1_.1_ ‘D,n ——2——-—1 3 . (2.28b>
411 Px 2 m1

-1
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By the same arguments (we sce in the Appendix that the neglect of terms
proportional to m, gives no appreciable error), we find for the interferonce of spin
and convection currents of the target particle :

22 a a b 82 - %
02) = —2 > i--%~-- A { 2" {2 2 mZ] “E (2.29a)
24t [82 - mz] B

which reduces to :

2p2'p4
2
m

2
Z

0(2) = -2 qu
2 5

when p20p4 >> mg . (2-29b)

The latter approximation will be used for all values of p2.p4 although it yields a
small (order unity) error for small PyePye

For the cross terms between particle 1 and particle 2, we have to distinguish
the contribution from the interfercnce of the svin current of particle 1 with the con=
vection current of particle 2 called C(12) with the corresponding contribution €(21),

The result, whose derivation is presented in the Appendix, is :

Z,%, . DD z,7
c(12) = ¢(21) = —2. P 25 _ . 12 ang . (2.30)

Thus the contribution from the spin of particle 1 to radiative corrections
is given by :

20 [ c(1) + c(12)] ,

and similarly the contribution from the spin of particle 2 is :

200 { c(2) +c(21)] .

n
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At first sight, the real photon spin-convection terms involve intograls of
order o dk/E and they should accordingly be of rclative order o A E/E, However,
if the undetected particle is cxtremely relativistic in the laboratory, a photon emit-
ted parallel to it can carry off considerable encrgy and a much largoer contribution
might be obtaincd. Vhen this situation occurs, it is no longer profitable to attempt
a general analysis since other features, such as variation of the traccs through the
dependence of the final momentum on k, will be of comparable importance. Accordingly,
we do not include thesc terms among what we choose to define as the external radiative
corrections, These contributions will be discusscd in grcater detail in the following

Section.

III. REFINGIENTS AND LIMITATIONS

The preceding Section contains most of what can be said in a general way
about the radiative corrections without a detailed consideration of the basic process.
Before turning to some of the refinements which are possible for specific processes,
let us review qualitatively the origin of the logarithmic temms. The doubly logarithmic
terms are associated principally with the infrared divergent integrals; roughly spea-
king, one logarithm comes from the strongly peaked angular integration and the other
from the dk/k integrationg. In the case of the virtual photons, the upper limit of the
dk/k integration is effectively determined by the external momenta. In making the ex-
ternal radiative correction approximation, the dependence of the basic factor on k was
neglected. If this variation with k is in fact not too violent, the doubly logarithmic
terms should be well estimated1o. The effect of the variation of the basic factor on
k may perhaps be estimated by expanding it in a power series in k. The linear term in
k would no longer contain an infrared divergence, but it could yield a single logarith:
from the angular integration, This procedure will be used in one of the estimates that

follows.

In the non~infrared parts of the external radiative corrections (occurring
in both the convection and spin-convection contributions), some single-~logarithmic
terms are associated with the strongly peaked angular integrations tiimes a non-loga-
rithmic dk/E integral. Others are residues of the spurious ultraviolet divergence,
which is logarithmic, Clearly, if there is any important variation of the basic factor
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these terms have not been reliably estimated. In that situation there is no justifice-
tion in retaining them if the corrections mentioned in the preceding paragraph are
ignqred. In the most general situation, we therefore regard only the dominant doubly
logarithmic terms as having been relisbly estimated.

Fortunately, in most of the contemporary or possible experiments in which
radiative corrections are likely to be an important consideration, a more detailed
study is possible, Some of these refinements on the general discussion will now be

presented.

a) The effect of the k-dependence of the basic Process.

Suppose the basic scattering is due to the exchange of a single photon. Consider two
photons exchange; in obtaining the convection contribution for the soft photon, we

have made the following approximation relative to the hard photon :

! N ! (3.1)
(q-k)? q

The correction to this approximation corresponds to inserting an extra factor(2k.q/q2)
into the definition of B(2), Eq.(2.16), The resulting correction is easily found to be-

32,2
EB(12) = —12 tay (3.2)
21t

which is important enough to be included in our final formulae.

Suppose the bagic interaction is morc complicated, but still may be expresse.

by a function G(qz). Then ( 3.2) must be multiplied by a factor :

- %1 (g®)/6(4%)

where the prime denotes differentiation with respect to the argument. If the scattering
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is due to electromagnetic interaction, but involves finite structure, G(qa) takes the
form F(qz)/q2 where F is the form factor, and the correction factor which should mul-
tiply (4.2) becomes :

1 -q% P (/D) . (3.3)

The second term, which might become more important than the first in some circume’
atances, has been omitted from the tabulated formulae presented in the following
Section,

The preceding argument is valid only when the basic factor does not va=
ry much within the range of values of k which are important in the integral. Some
examples where this variation must be considered more completely will now be quoted
The first of these is electron-electron scattering at small center-of-mass angles,
Then q2 is small and the magnitude of (2k.q/q2) might become large. To see how impor-
tant these effects misht be, we may compare the contributions obtained by the present
methods with the exact two-photon exchange contributionsz. The surprising result is
that our methods yield quitc cecursts answers for this cxample. Lnother example is
Compton scattering near 180° in the center-of-mass., The dominant diagram is the one
in which the incowming electron enits the final photon before absorbing the initial
one. The intermediate electron propagator then yields the small denouinator 2p3.p2.
In this case if we compare our result with the exact one8, we find a difference

(exact minus approximate) in B of :

D..p
AB :_: + 1—" /an 1 4_
4t Pj-P3

(304)

An exact calculation of % for large energy loss has not yet been done, so we cannot
determine the corresponding error l&g in the calculation of real photon emission. To
the extent that AB and AB are associated with infrared photons, they may tend to
cancel like the doubly-logarithmic terms which depend on the type of infrared cut-off.
The term (343 ) is not included in the tabulated result of Section IV; the results for
Compton scattering are clearly less reliable than those for the other processes tabu-

lated.
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We conjecture that the difference between electron-electron scattering
and Compton scattering arises as follows. The effective range of integration over k
which yields the major contribution is determined by the external charged lines, For
small q in electron-electron scattering, the range is proportional to q. Thus as g
decreases, k.q/q2 does not increase in importance., On the other hand, for Compton
scattering, the important range of k is probably determined from (p2- p4)2, which is
large relative to 2p2.p3 in the situation under consideration. Important corrections

result.

b) The effcct of the anomalous magnetic moment of the proton.

In electron-proton scattering, suppose that the extra soft photon exchanged between
the two particles interacts with the anomalous moment of the proton rather than with
its convection or spin current. Corresponding to the fact that the photon is assumed
to be soft, we consider the terms with the least number of powers of k in the numera-
tor and we neglect the dependence of the basic interaction on k. It is then easy to
give an argument why these contributions vanish to logarithmic order. For example,
suppose the photons are exchanged between the incident particles; we then have to

study the structure :

[k a*
=) S 4] ;

5 ulp,) .

(x° - 2k.p2)(k2 +2p)  k

But the result of the k integration can only replace the K in the commutator by é ;
it is then trivial to see that the rcmaining Dirac operators acting on the proton

spinor give zero.

The point of this dcmonstration is that no logarithms arise from the in-
teraction of soft photons with the proton's anomalous moment. However, if we take
into account the variation of the basic interaction with k, or the contributions from
electron spin interacting with the proton moment, a non-vanishing contribution could
occur. These contributions come mainly from the region of very large k and they are
not easily included within the framework of our present discussion.
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c) Small virtusl electron four-momentum.

A situation in which the integration over virtual photon mouentum might have a large
contribution owing to scveral dcnominators becoming small simultancously occurs as
follows. The virtual photon cmitted by the incoming clcctron takes nearly all the
energy and momentum of the electron. It thon scatters from the proton as a nearly
real photon and is re-absorbed by the electron, We might view this qualitatively as
a Compton scattering of the Lorentz contractcd proper field of the clectron. Letting
P be the momentum of the virtual electron, we consider the contribution arising from

the region of small p :

(b +m,)

- 4 1 1 1

u(p)Jdp- p, K 5o 8\ T2 Gwey) .
’ (p°-2p.py+my) (o -2p.pytm) N P -

As in the casc of the spin-convection and infrarcd tcrms, a logarithnic factor arises
from the angular intezration. lMore important, the factor p is replaced (in form) by

ﬁ1 + §3 ; we then find :
(¥ P+ Pay 'b'p_) X log.
When this is combined with the factor associated with the scattering of the photon

by the proton, which we denote simply by F¥L:\ (p1,p3,p2,p4)(p is here neglected),

the result is zero by gauge invariance ¢

M = o -

Thus no large contribution arises from the situation in which the virtual electron

is "soft".

In this subsection and the preceding one, the two-photon cxchange terms
) 11
have been studied from the point of view of radiative corrections. Other studies ,
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‘have placed the cmphasis on the off-the-mass-shell Compton scattering by a physical
nucleon, Whilc a critical study has not been made of the cxtent to which the two
mothods overise and the oxtent to which they are supplomentary, it secms significant
that they agree that the specific two-photon terms are unimportant at energics below
1 BeV, Our analysis shows that, as a consequence of gauge invariance, an unusually
large nucleon Compton scattering nececed not result in a large two-photon contribution.
There is not theorctical indication that those terms will become important at higher
energics, but neither is thore proof that they do not. The situation is also subject
to experimental study by comparison of electron-proton and positron-proton scattering,
the difference in cross sections being due to the interfercnce betwoen the one- and
two-photon terms. Present experiments12 give no indication of a significant two-
photon tcrm at incident cnergies of 200 and 300 MoV, Two photon contributions could
also introduce terms in the cross section which would make it impossible to fit the

13

experimental data with the Rosenbluth formula “, There is no experimental cvidence

for such a "breekdown" of the Rosenbluth formu1a14.

d) Radiative corrections to clectromagnetic scattering of spin zero

particles.

Radiative corrections to scattering of spin zero particles have already been partially
included in the so-called convection contributions. Howover, in casc the basic inter-
action is elcctromagnetic, there are certain additional rcfincments which we would
like to describe briefly. Thosc refincments are actually of no practical importance,

because in actual %hysical situations the basic intcraction is non-clectromagnetic.

The first of these refinemonts is that two photon lines may terminate at
the same vertex because of the A? ¢'+qb term in the Lagrangian. Thus it is possible
for a virtual photon to have one and tcrminate on tho oxternal boson linc and the
other terminate at the same vertox as the exchanged photon. It is not difficult to
show that this gives purely a contribution to the "spurious charge renormslization,
and is honce not of interest. The second refinement come about becausce the photon
emission oporator deponds on tho momontum of the charged particlc. Thus, in the radi-
ative correction in which tho boson cmits a virtual photon, exchanges a photon, and
then re-abosrbs the virtual photon, the ecmission operator for the exchanged photon
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has the factor (p1 +Pg - 21:)# in place of tho factor (p1 + p3)p_ in the basic
matrix eleument. Using standard methods, the -2k,4_results in a contribution to be
added to B :

.?.2: «Qn ******* .
2 il

e) Other refinements involving virtual photons.

Some othor refinements arc relegated to the Appendix; these are nccessary for the

Justification of soms of the approximations which have been used, but they arc not

in themselves of any great intrinsic intercst. They will be described very briefly

here. One of these is electron spin-proton convection contribution arising from an

additional exchanged photon, In Scetion IIb, this term was treated by neglecting po-

wers of the proton mass in the numerator in comparison with its cnergy. On its face
value this is not a good approximation unless the clectron cnergy is very much greater than

the proton mass; nevertheless, the crror is shown to be unimportant,

f) Refinements in the calculation of the real photon contribution,

In some situations, the kincmatics permit the unobsorvod photon to have an encrgy
comparablc to that of the unobserved particle. For cxample, if thc proton is detccted
in high-onergy clectron-proton scattoring, an unobscrved photon cmitted parallel to
the elcctron can carry most of the unobserved onergy. The approximation of
negleeting powers of k in tho numerator is then no longer valid, and the caleulation
must be reconsidered carefully, In addition to tho explicit k-dopondence of the inte-
grand, therc is an implicit one duc to the dependence of the final clectron projec-
tion operator on k @

b .
_32;1"‘1 = (b~ ¥+ &4, +n,)/20, .

In the calculation of Section IIb, this projoction oporator was approximated by
(53 + m)/2m.
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A direct calculation of the additional contribution arising from k-depen-
dence would be possible, but somewhat lengthy. Fortumately, as we are interestecd only
in the logarithmic terms, it is possible to give a rather detailed discussion without
explicit evaluation of the traces. As usual, the logarithmic terms turn out to be a
simple multiple of the original traces, For dcfiniteness, the discussion will be
glven for Experiment II. Recall that the product of the traces can be reduced ultima-
tely to a polynomial of invariant products of thc momenta p1, Pos p3, p4, 6 p4 ’
pé and k. Because of the conservation equations (2.8), thore arc various rclations
between the invariant products., Clearly, since 8;94 is small, it can be neglected

everywhere in the trace. Also, pé may be eliminated by :

p%=p3—k+5p4

ne

P3-ko

The product of traccs then depends on invariant products of p1, p2, p3, p4 and k.
Its value for k = 0 is just the trace occurring in clastic scattering. Ve have then
to consider integrals in the special frame with polynomials in k.p2 in the numerator.
The detailed considerations are given in Appendix D ; and the results, which are

simple, are the following. If the integrand has the form :

m""‘/(k-p-)})2 or  1/(k.py){kep,) Lk # 3,

extra powers of k in the numerator may be neglected. In integrals containing a factor
(1/k.p%), the other k's in numerator and denominator may be replaced according to the

substitution :
k — (1/2)P3 .

For example :

kep PzeD
¢ ___.)___3__&_. -Q,kf3,

kepg kep kepy DP5eRy
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and
kc kop P 'p p 'P
p‘z' k S (1/2) 227K w43,
1
k._p3 k.pm k.p3 P3P

If there are highcr than two powers of k in the numerator, an additional numerical
factor is rcquired. However, in all these cascs, it will turn out that cancellations

will give a result which is identically zero.

Because of these simple results for the integrals, we can neglect all
terms in the trace which do not involve photon-emission from external line 3; wherever
possible, factors of m, are neglected. Let us consider first the interferonce terms;

the pertinent factor in the traces is :

(2p3, +fic X)

oou/y% 2 k.pé tee = oo (ﬁ3 2P%M- 2}€ p3fL+ 3 bl/.(%)/z kopé LN

The first term is the onc already included in %ﬁ. Vith the substitution k —+ 1/2 Pz
and the approximation pg = m? ¥ 0, the second and third

terms cancel, Thus the intorfercnce terms may be ignored; this applies also to inter-

ference terms in which the other factor corrcsponds to cmission from an intermal line.

Finally, the term involving emission only from line 3 involves :

(203 + ¥y, ) |, (@04, 4y, %) (= )
sse —-——3-t———‘:‘-— é' ——3—}{:——}:—“— g L ﬁ - 1 é LN ]
2 kupy > 2kpy l (k.p%)z > 2k 3)

nt
The first term is already incorporated in B!'. The second term is proportional to the

original traco and yields the radiative correction :

2
o 2 2f

o fn (14 == ), (3.5)

4'[( mj

where 1 refers to the obsorved and j to the unobscrved particle,
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IV, SUMMARY OF RESULTS FOR VARIOUS IZX”ERIMENTS.

The aim of this scction is to ossemble the various contributions derived
in Sections II and III into convenicnt formulae for various possible cxperiments.
Since tcmms of order unity have larcady been ncglected in approximnting the various
inteograls, wc omit torms from the gencral formula which will be smell in any fore-
seeable practical energy range. An cxception to this remerk is that we keep certain
terms of order onc when they are associated with the clectron vertex function or
vacuum polarization. There is no particular justification for this, cxcept that the
numbers are simple and well-known. It would be feasible to calculate thosc terms of
order unity for purc clectrodynamic processes - in fact, they arc portly contained in
some carlicr cxact calculations « but present oxperimental accuracics for this type
of experiment do not scem to warrant the coffort at thc presont time. To got an csti-
mate of the error involved in negleccting these contributions of order unity, we note
that they arc to be multiplicd by (e /) to yield a rclative correction to the cross

section. An educatcd guess is that cerrors as large as 1% aro likely, but errors lar-
ger than 2% arc not likely. Although somc now notation is introduced here, most of
the quantities arc defined in Scctions (IIa) and (IIb). Particularly to be noted are
(2.9), (2.10) and (2.21).

a) Elcctron Scattering from a Proton with the Elcctron Deteeted.

To conform with the notation of Tsai, we sct By =0, Oy = M, Z1 =1, Z2 = -Z, whore
Z is 1 for the clcctron-proton scattering and -1 for positron-proton scattering; [§E3
is the cnergy rcsolution of the clectron detector as discussed in Scetion (IIa).

According to (2.10) and (3.2 ), the fractional corrcction is then given by

~
2 ol (ReB + B)

o S, 2P 1 o0 BBN2Y 43y iP5y sl
e L[@ 2 1_] : [Y(E} /‘ :] p ? 2 -+ K4 9j
1 (4.1)

{ E .2 /A
Z—“)sz M [72<.1.) (‘%‘ ;s - /6(231/:-4) + //3(2E3/H)S

o
n

ue

+

,,—(l E4
- '3 . 2 2 -,
2 g E E+p,| - By (AR 2B E (
Z p 1 474 A (I3 3 4y {2 4
* 72[54:“1 n '-1,5 Jzn[.f'% Bs ] "2 o -t b n
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It has not bouen necessary to include §B in this cxzpression since it is negligible
for all foasible encrgies. By differontiction, we find for the spcctium of scattered

clectrons

s

o o fors 20y KRR )
de s 0 .L"f[@n 175 -1J +4Z@nva+222 —an 4 4. - 1}3 (4.2)

dps Pz 1( o B I

Table I contains two numerical examples of the adplication of ( 4.1 ); they arc the
same excmples given by Tsai, whosc resultis are labeledéS*'. Ve may notc the following

diffeoreonces between the prescent calculation and Tsai's

i) The terms retained by Tsai are cxpresscd in terms of Spence functions; in effcct,
our calculation is crranged so that all Spence functions arc of order unity and

they arc neglected.

- 2 . . . . . \
ii)In the Z and 2Z° contributions we retain spin-convection and non-infrared convec-
tion terms which Tsai neglcets; these terms have a single power of o logarithm of

encrgy ratios, but thoy arc not numerically very importaent in the cases considered,

The differcnce between these two approximations is not unrcasonably large; and as
far as accuracy is concerned, there is no great basis for preferring one over the

other.

b) Elcctron Scattering from a vroton with proton dotoeted.

The principel difference between this and the preceding oxample is that &3 is quite
important, corresponding to the fact that a photon can carry off a large anount of
encrgy if it is cnitted parallel to the final clectron, cven if the cnergy loss of
the proton is relatively small. Anothor complication of lesser importance is that
it is nocessary to treat tho cleetron trace in its ontirety, including spin contri-

butions, as discussed in Section IIIf. The fractional corrcction is :

veefenn
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2 U2 )AL 1T 00 TEB %é-lenzA-unA}
‘ m 9 2 4

' ( )2 5
+ ’Z:‘ {-@n? dn [ Mz; z 4} _/3(2E1/M) + ﬂ(2E3/M)§ (4.3)
Z2d -S( <E +p4) ’> {:(p‘I .p3) /\ 2} ‘Qn —_— 2 pn ’?E

E3 il

wbere A = {(E + M)/E4] (£>p4/p4 The energy distribution of the recoil pro~

tons is

[pnz ﬁ—m-?- —1-in/\ —31+42Qn~rz +

. (4.4)
E E + p
+ 222[53- -Qn -—i-—i—— }z

It should be noted that the "radiative tail" is considerably smaller in provortion

to the cross section than for the case where the electron is detected; it also decrea-
ses somewhat more rapidly with increasing energy loss. Table I contains numerical
examples for the seame exverimental parameters worked out previously for the electron
detection experiment, It should be noted that ( 4,3 ) disagrees with the result obtai-
ned by Krass4. The disagreement can be traced to an error in the hard photon calcula-
tion in Ref. 4. In particular, the equation giving k.p3 after(3.18)of Ref,4. should be
replaced by :

(5%, pp0esst ).

ne

k.p3

With this change, his result can be reconcilied with ours15.
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c¢) Electron-electron scattering.

Now, there is no physical distinction between Experiments I and II; the rodiative correc~
tions may be calculated in either way and both methods give the same results, Adherings
to the restrictions imposed earlier, we assume that both final electrons are extremely
relativistic in the final state (laboratory system) when the scattering is elastic.

A s8light complication is introduced because exchange gives rise to two terus in the
scattering amplitude. In the doubly logarithmic corrections, both terms are corrected
by the same factor. However, for the singly logarithiic corrections, these factors
are different and the scattering amplitude is not altered by a common factor. This
difficulty may be overcome by the following observation. ‘hen the two terms are com-
parable, the factors are the same., When they are not comparable, we nay simply use
the factor associated with the biggest term, with negligible error. To see this, con-
sider vacuum polarization which modifies the photon propagator occuring in elastic

scattering :

2
1/(z, - »")
by the factor :
2p, «p'
34( n

Here p! refers to either p3 or p4, and a linear coubination of both photon propagatorc
occurs in the elastic scattering matrix element, corresponding to the direct and ex~
change contributions, If p1.p3 and pT.p4 are comparable (i.e., the came within a
factor of 3 or 4), we can use either as the argument of the logaritim with an error
of order unity. If they differ by a large factor, the photon propagators will also
differ by a large factor; and the term with the smallest value of p1.p' doainates.
Accordingly, we can take as our rule that the miniaum value of p1.p‘ be used as the
argument of the logarithm; this is simply mEm’ where Em is the smaller of E3 and E4.
A similar argument may be used with respect to the two-photon-terms. Recall that the
single logarithmic contributions arising from convection and spin-convecction were
fortuitously cancelled by the contribution of Section IIIa. As a consequence, only
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the single logarithmic terms from the vertex parts survive., These may also be expres-

sed in terma of Em' The fractional radiative correction is then :

2 2
E1 E1

8 E’%{[Qn fm-E%E-:‘l- - 1} dn (%Ea, r3) 4 Pn? (-E—B-E: r>+

28 E, \
Sy (2

where r depends on the type of experiment and the resolution :

(4.5)

r = [Spi/pi for type (a) experiment (4.6a)
p. 8in 6,
r = --..l——___..__JL_ e
i
n
T 2(1--2) - for type (o) experiment (4.6b)
E1 siné):.L

It is also a simple matter to revise ( 4.5 ) for a clashing beam cxperiment

(p1 + p2 = 0) where only one of the particles is detected with cnergy resolution.
Simply replace E 2 by the invariant p ) .pz/m ; T is then given by ( 4.6a ) with

the understanding that A P and p; are center-of-mass quantities. As usual, the
energy distribution may be obtained by differentiation : it will not be reproduced
here. Equation ( 4¢5 ) differs from the result of TsaiB. His calculation uses appro-
ximations adequate for the experimental conditions he envisaged, but the present

results are velid for more general conditions,
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d) Electron-positron scattering.

The results are contained in a single formula

2
¥ % {[Qn %?— - 1}~Pn (% r3) -4 9n2 (;41 r)‘ +
- Qni}zﬁ(? )% (4.7)

where r is given by ( 4.6 ), The result may also be vsed in the center-of-mass

frame using the rules given in the preceding subsection.

e) Compton scattering with photon detected.

In this case, particle (1) has mass and charge zero; as in electron-electron scatte-

ring, & B is quite important.

The result is :

(4.8)

From the discussion given in IIIa, this formula is not expected to be very reliable
for backward scattering in the center-of-mass system, corresponding here to E1>> E3
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f) Compton scattering with electron detected.

There is now a slight complication in that the undetected particle has zero mass;
the separation of g' into ﬁ and E>§ is therefore apparently meaningless., However,
we may use our previous result by taking the limit of the expressions for % and &8

as m, —> O, Only B contributes, and the correction is :

1

)]

2E B 2h B (
8 2 31_ (Pn ..___4.’_ - 1] Qn(—L r3)+§- Qn -—f'- --l— ?n2 =L (4.9)
P ( m | E3 5 m E3 S

The validity of the limiting procedure (m1-—~9 0) has been confirmed by a direct cal-
culation in which m, is taken to be zero and B' is evaluvated directly. As in the pre-
ceding example, this equation is not expected to be reliable for E1 }5 E3.

V. DISCUSSION

Two basically different approximations have been riade in obtaining the
results of the preceding section. The first of these, which vas discussed with the
aid of numeréus exanmples in Section III, is the neglect of all terms which are not
obviously large because of the confluence of several small denouinators, The terms
retained can be studied without reference to the details of the basic interactions.
We have termed them external radiative corrections. The interhal radiative correc-

tions, whose complete evaluation would be wany more times difficult, have in most

cases been estimated to be of lesser importance. 4 general estimate of the error made
in neglecting the internal radiative corrections camnot be made. In the case of
Compton scattering with nearly complete interchange of momentum between the electron
and the photon, the corrections appear to be large, On the other hand in those cases
where the basic interaction is due to the exchange of a photon between charged par-
ticles, there is no reason to suppose that these corrections are important relative
to the second type of approximation, which is the neglect of terms of order unity
(times ot /7t ) in the external radiative corrections. This second approximation is
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expected to introduce an error of order 1% and probebly not more than 2% in the

calculated cross section.

There is one other important question to be discussed : namely, to what
extent can the higher order corrections be estimated by assuming that the factor
(1+68 ) is actually the beginning of the series expansion of 98 s where 0o
provides a good estimate of the corrections to all orders. It is known that the in-
frared part of the radiative correction should be exponentiated in this manner16.

The doubly logarithmic terms in the virtual photon contribution B clearly are relate”
to the infrared divergence since they depend on the type of cutoff ( A or kmin)
used in the calculation, With very good resolution ( rﬂ1 sufficiently small), the
real photon contribution B' (%B) is purely infrared, and so its doubly logarithmic
contribution may also be exponentiated., With poorer energy recolution, S B beconmes
important and terms involving the square of the logarithm of the energy resolution
arise, Althaugh these terms are not of the typical infrared form, their main contri-
bution does arise from the smaller values of the enecrgy loss (see 2.26). We therefore
make the following conjecture. If &' is the doubly logarithmic part of & , the

expression :
eg‘ (1+68 - $)

yields a better estimate of the radiative corrections than does the original estimate

(1+6).
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PENDIX

A. Kinematical Detailsa.

As discussed in Section II, it is convenient to carry out the final state
integration over the phase space of the final unobserved photon and particle by first
integrating over angles in a special Lorentz frame in which the total momentum of the
unobserved constituents is zero. There is a different Lorentz frame for each value of
the four-momentum loss of the observed particle. This section of the Appendix will be
concerned primarily with the details of how verious kinematical quantities, as seen in
the special frame, depend on the momentum loss of the observed particle. Unfortunately,
the analysis is complicated and uninteresting, but it is straightforward and it seems
unavoidable if all the terms of logarithimic order are to be properly identified.

The special Lorentz frame is defined by the relation

E;+i€=o . (4-1)

In this equation, and in the remainder of the Appendix, we shall always let the sub-
script j refer to the final unobserved particle and i to the obaserved particle. The
energies of the unobserved constituents in the special frame are :

k= oy /0 e B o= @] ey (a-2)

with

and 3o = (o +p) . 8p '
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when it is necessary to distinguish, we use C = C1 or 02 in Cxperiment I or Experiment
II respectively. The energy B! 9 of any other particle as seen in this special frame

can then be determined from :

CE"; = (k+p3)=p)’2 = (p.j + Spi).% . (A-3)

The resulting values of E:?, for the two experiments are the following :

mBs + Yy =By OBy . Mt

Experiment T : ’ﬁ; = P (A-4a)
C C
1 1
" m. 5, +m 8}]
B - 24" "2 773 (A-4v)
C
1
n.E .
[ 21
Eé - ___C — (A—4C)
1
~ m(E—-m)+ —mSE m(E—m)+
Experiment IT : B - 2\ Pg Tt B2 " Pa0% o T2 T2 (4-5a)
Cz i C2
nE, + 0,68
A o,
Eé - 273 2774 (A~5b)
C2
~ nE
o= -2 (4-5¢)
)

Obviously, in these expressions E)E1 is zero for Experiments Ic and IIc. In order to
make suitable approximations in evaluating the final integral over the momentum loss,
it is necessary to know whether these various energies are relativistic or non-relati~
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vistic, The situation is complicated by the fact that as ) p; varies, some of the ener..
gles may vary between relativistic and non-relativistic values, This variation is to
be studied under the general experimental restrictions we have iuposed, namely, that
the energy of the incident and scattered particle be extremely relativistic as seen in
the laboratory, that ‘qz ' » mi , and that the resolution of the detected particle be
reasonably good (say [621\ /| 21' Z .05), Also, we assuze m, <\m2 and if

m1 = m2 that both final particles are extremely relativistic in the laboratory system,
As & P, tends towards zero, the various I'Jv'_% approach linits EQ which are simply the
energies of the elastically scattered particles in the Lorentz frame in which the un~

observed particle is at rest. For the two experiments these are :

I. E‘1=E3, E3=E1, E2=E4
B = 0 - A-J = ol B =
11, E, = m2(E4 m2)/m1, E, =m, u3/m1, E, =m, E1/m,l .

Now we can discuss the situation in the two experiments. In Ixperiment I it is easy to
t ]
see that E1 and E3 1°

E2 is large compared to m, (i.ee, E 4 > m2), ﬁé will be large compared to , for all

8 p.e+ The only case that might cause trouble then is that ?3" might be comparable to
3 2

are always much greater than m,, It is also easy to see that if

m, for small & p3, but might become relativistic for larger S P5e From (A—4b), this
could happen only for Dxperiment Ia when & E3 > E‘4, which implies E3 N E 4 and
hence E1/I:‘.3 % {1, Now the condition that E 4 be a non-relativistic energy is simply
thath2| / mg be much less than one., But since }qzl P>) m? , this may happen only
if m, > m e Thus we need simultaneously :

mf(( \qz\ & mg end By ) & Ps » mn.

In the most "favorable" case of clectron-proton scattering, one could reach these con-

ditions by the following oxperimental parameters 1 B, = 50 BeV, © = 0.5 X 10~

radians, and 8 p3 = 5 BeV, It scems unlikely that precision work will be carried
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out in this region in the near future; even if it was, it would not be justified to
investigate this point in further detail in view of other more serious approximations
that have been made in the calculations, Thus, for Experiment I, we conclude that the

E’ always have the same character (relativistic or non-relativistic) as the corres-

2 ~
ponding E 2

s

In Exgeriment II, E{ and EA are always ext/z;emely relativistic; E2 is also

extremely relativistic, but under certain conditions, Eé may become non-relativistic,

For electron-electron scattering these conditions cannot be attained because of the

restrictions that both final particles be extremely relativistic., For electron-proton

scattering they can be attained for Experiment IIla when E1 » m, and © 4 is small, We

shall not present a detailed analysis here, but in the calculations special attention
1

will be paid to those integrals which depend on Ez in Experiment II,
PFinally, we present a simple approximation which is useful in evaluating

certain integrals which will occur in the next section. Angular integrations often

result in expressions of the form :

an E+p

It is easy to show that this function can be bounded from above and below in the

following manner @

2
2 0n & { E .Qn_E'_"g, (2 1+~né- n 2 (A.6)
n P E-p 2E n

If ED m, we can approximate the function by the lower bound; the upper bound is

numerically a better approximation than the lower bound (error is less than 5% for all
E), but it leads to slightly more complicated integrals., These bounds will be particu-
larly helpful in the case of E} . In Experiment II since it will enable us to determinc

2
the consequences of its variation from relativistic values to non-relativistic ones,
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B, Calculation of 5 f.

We have to evaluate the integrals of the form given in (2.22)

Lp = dhg‘i P ¥ PR (B=1)
) (k.pé kop) kupy Koy |

The angular integration in the first term is carried out in the Lorentz frame defined
by (A-1); that of the second term is defined by p. = O. Ve have given arguments in
Section II that all terms with £ and k combinatio;s of 1 and 2, and the term with
f=k=1are identically zero. Now we shall show that the terms with £ = i and

k = 1 or 2 are also unimportant as a consequence of the restriction lAgi|<\’ | pil .
The integral (2.34) yields a logarithm only if pSl .pi §> m,m, in that case, it

is approximately

P, , P} Ppeb 0y
J = inf—=" "t | = - == 1,
) 47(‘{,11 p“e‘pi 4. Pl'pi

The resulting contribution to & B is always of order (A p1/p1).

We must therefore consider only two cases for (B—1) :

{+ The case k = j, .Q;é Jo

Using (2.35), we find for the integrand :

_ B S - S
! -'1'5&' cos © Ey - py cos® ¥4
which yields !
B E1+p E, , E,+p 2y,
J P’Q %" Fo ® 2Py my + 2y, S



24 Thecasek=9,=.j.

The integrand is :

n® 12 o’
J - J
Bi (8. - «% cos @)d
which y.elds :
m2
I, = 4 | IS V) g Su— (B-3)
mj + 2 B'i m,j + 2 ?fi

The results may now be combined and the final integrals cvalunted for the two experi-

ments.

Experiment I.

It is convenient to split S B into threce parts associated with the decompo--
sition of S', For Experiment I, & B(1) vanishes and we need consider only 8 B(12) are
1
80 it is permissible to approximate the functions of (B~2) by the lower bound of (A-6).
It follows that 1@

& B(2) The arguments of Appendix A showed that E' and }33 arc always relativistic,

r7 ~~ ~
N / 1 dy 5 B
&% (12) ¥ 12 ‘,b_l Inf 2
7 0 hf E, B
(r ;
= Z122 } ! .-632_1_ D,n 1+ b1
71 0 gl m, E3
2.2 r
o 12 an 1+ T1 (B-4)
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There are no experimental conditions for which this term is likely to be important.,

The expression for & B(2) redusca to :

z iy, ¥ o il oo )
" ~ ) 5 n o) <, ] ~’: g
D - <~ 1..ni

271 JO 1 2 B,-5, 2 L3 S

If we use the simple lower bound approximation from (A-6), the result is :

~ 2 2" AR
§8(2) ¢ & &- an 1+ ——2.1— +20n? I 2 (B-5)
451 L n, E4 S

The additional contribution that would be obtained by using the upper bound of (A-6)

rather than the lower bound can, after considerable labor, be reduced to :

2 2 ]
zg 5 ( o AL AE r ),
-2 20 —an 14— +-yn2 1+ 5 + 2:(2 1+ L3 ;,)n 1
8. Ei L mz2 E, n T, 2E, 88 ) S
(B-6).

We want to show that this can safely be neglected. Note first that it can be comparstle
to (B-S) only if E4 is comparable to mse The logarithms can then have a large argument
only if E:3 ZE 1 }> p3>> m2. As discussed in Appendix A, thore are no practical expe-
rimental situations where thece and the other restrictions are likely to be met. The
approximation (B-5) is therefore adequate. In practice, only the first term of (B-5)

is likely to be important.

Experiment II.

This time & B(2) vanishes. The results for &B(1) and 65(12), using the

lower bound approximation of (A~6) are :
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~ 22 2" E
§3(1) = 1o D2 <1 P2 Jeala? | +<—EL -1>§4_] (1)
44 m, 4 Py
. 2,2 AE
§8(12) = 2 0p? (1+ E4>~ (B-8)
25 5

The contribution resulting from the differ:nce between the upper and lower bounds of
(A-6) is of order (m?/Eg) compared with (B-8), and is hence completely negligible. As
in Experiment I, only the first term of (B-7) is important in practice; the vnimportant

terms are dropped in the result quoted in Section IIb.

C. Spin-Convection Tavm involvin

loswy Particle,

The purpose of this Appendix is to derive some of the results of Section Ilc.
In effect, it is an exercise in the manipulation of relatively complicated expressions
to reduce them to a simple form by ncglecting terms of order unity. Consider first the
contribution arising from the convection current of particle 2 and the spin current of

particle 1, Following the procedure used in deriving C(1), the result moy be written :

.

2.2 Py D DyeD

o(12) = —12 } (m:)dxf 12, 2 ? (c-1)
it L (12 50,2

where

pi(12) = 1 [ (14x)° mf + (1-x)? mz - 2p1.p2(1—x2)J
4

pi(32) = 1 [ (1+x)2 m? + (1-x)2 mg + 2p3.p2(1-x2)} .
4

It is understood that (C-1) is a principal value integral, since the imaginary part

will not contribute to the cross section to order of » The general restrictions assumed
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on the parameter are :

p1‘p2l p3°p2 >> m1m2 ?

. . 2
however, it is possible that m, 3> Py Dy p3.p2.

Neglecting terms of order unity, we find ¢

’ 2
2,2 D, .p n 2p, «P
c(12)=_—1—2~§l).n 172 . — Qn-——i?—?_. -
2471 l PzeD, m, + 2p1up2 n,
> .
n, 2p3.,p2 2
- — fn 22 (C-2a)
o, - 293.1)2 ay S
2,% P, D
y o 12 §, 1772 . (c-2v)

24 p3,112

The approximation is justificd as follows : it is clear that the second and third terms
of (C-2a) are important only when the arguments of the logarithms are small; the third
term is of order one when 2;93.p2 = mg in gspite of the small denominator. The scatte-

ring kinematics yield :

2p3.0, 2B, 2E, /m2

) m, 1+ (E1/m2)(1‘-cose)

28, +py/n5
1+ (2p, +py/03)
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Thus if 2p,.p, 3 ng, the second terms of (C-2a) is amall and the third of ordor unity.
If 2p,.p, & mg, the second and third terms tend to cancel; and, in fact, C(12) itself

is smsll,

In calculating the contributions involving the spin of particle 1, the

approximation i

$y u (o)

m, u (p,)

e
o

was used repeatedly. In fact, detailed examination of the trace shows these terms are
actually of relative order (m?/E?). In evaluating the contributions from the spin of
particle 2, more care is nceded since thesc tcerms may not be negligible if m, is large.
The contribution from the convection current of particle 1 and the snin current of par-

ticle 2 yields a contribtuion C(21) which is identical to C(12)(to order unity) plus a

residue :
2%, 1 (4,774 b T T 4 |
A (1—x) dx 5 + 5 '
ot | | 226G ,2) |
Y-
9n 205D, . 2D4eD, (C-3)
. I in 5 ?
m,Z,7 n, o n
x _212 [ g+ ¢ 2 T S 2 .
21t k 1 AN 3 U2
m, - 2 P3°P5 m, + 2p1.p2
2pp
2 . 2 172
If m, <§2p1.p2, 2p3.p2 these tcrms are of relative order (m2/2p1.p2) ~Qn -—~;2_.
2

and hence negligible, If mSQ} 2p1.p2, 2p3.p2, their relative order is

E1/m2 or E3/m2, which is again negligible. In the intermediate region, thoy are of
order unity.

The contribution involving the spin and convection current of narticle 2
may be evaluated in a similar manner. Again the terms involving a factor m, are of order

unity or less and the surviving contribution is given by (2,29),
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D. Formulase for calculating the effect of trace voriation.

In this Appendix the formulae needed in the analysis of Section IIIf will be
derived. The integrals required in the cvaluation of B! take the form :

r‘i . s
ax . ~ k p'.p
Z)(:fl d&)—. a b .
1 1 !
0 i k.pa k.pb

The modification of these intcgrals produced by factors of form k.pé in the numerator is
to be determined for various choices of a and b. It may be helpful to preface the follo-
wing analysis with a brief outlinc of the arguments which will be used to determine which
terms are significant. The mcin point is to obscrve the b’ > dependonce resulting after

the angulor integration., If m2 can be neglected without causing a divergence for small

1
b’ PL and if there arc powers of (\{ > in the numerator, *the finel integrel will be some
positive power of r’z. Such terms will be of relative order ( lék'g4] /E1 ,n> 1,
and hence negligible. We thcrefore retcin only the torms with the sacllest degree inzgz

(as m2——->0). How this is used moy be illustroted by the following ciample @
1
PaPy < B By = Pyemy

py+(p5 + 9 1) pye(p5 +6p,)

fe

2
m1 + 252
Case 1 ta=b=3
. T W2 a2 o2
d.('z————i = 44 — = 4,(2
(k.pé) P m + 2,
2y
2
= 41( - 41{—?—-— .
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v
Here the first term yiclds a contribution to B and the second to 51%. Suppose there is
an extra factor k.pé in the numerator. If ¢ = 3, this foctor will yield an cxtra fac-
tor Ej2 ofter the angul~r integration, and it may therefore be neglected. Suppose ¢ f 3
then :

. ~
-~

kep! = X (Ec - p, cos 8)

where o term drops out in the angul~r integrotion. The finel integration yields a result
of order unity. Thus, an extra power of k.pé, gives o result which may be ignored. The
same is true of higher powers os well, so in this cosc the trace voriotion may be neglec-

ted,
Casc 2t a=b#3

If the cxtro factor is k.p B or k.pt1 the resulting contribution is

1
Pz
clearly negligible. If it is “.p £ . b) we write :

e
kp, = KE -k.p
- /_:‘J Lo " VIR ~ 2 - ey -~ ~ "—2
= kB - (E'Pa fcf?a)/Ea (¥%§a)'£pc%Pa)/Ea

~
<

p_.(p.+ &p,)
[ 4 Kop .

a

p,+(ps+ & p,)

The second term in the sccond line was trensformed by the argument given in the intro-

ductory paragreph and the third drops out upon angular integration. The final contribu-

tion is negligible.
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Case 3. a # 3, b#3, a#b

It is necessary to consider only the special cases ¢ = 3, a,or b, since all
other cases may be reduced to these by momentum conservation. If ¢ = 3, the extra factor

of ()'2 yields an unimportant contribution. If ¢ = a, the angular integral yields :

kpa.pb On Zmb

B ™

41

But (k/Eb) =Y 2/pb.(p3+f5 p 4), and the resulting contribution may be neglected.
Case 4. a = 3, b £ 3, one factor k.pc in numerator,

This is now the only case which can yield on important contribution, A facto:

k.p.p', in the numerator may be neglected. Thus consider :

aq ’
1
k.p3 k.pb

N2 .
f ~ k k.pc p3.pb

a8 in Case 2 :

Ec (P(i)b)°(§c'§b)
kep, =~ k.p - s
c b 2
% By
E
z =2 k.py .

This is just what is obtained by the substitution :

k.pg P3+Pq
k.pb p3.pb
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Case 5, a = 3, b # 3, factor k.pc k.py in numerator.

If ¢ or d = 3, the result is immediatcly negligible, For ¢, d # 3, the
factors k.pc and k.p g are rewritten as in Case 4. This time the last term involving
(E xﬂ%).(gc xgb) / L*"i in k.p, and a similar term in k.py cannot be eliminated by
angular symmetry since there are two such factors in the numerator. However, they may

be eliminated by another argument :

[SV I "

(5, (5,75, ) ) (

EIAEI N

it
—

e
[e}

.

‘o
o

"

Because of the factor k A 2/2, this term uay be neglected.

B¢

c
k.pc _.ETb_ k.pb ’

ne

and
~2
. k pé.pb k.pc k.pd
k.p% k.p.D
2 ~ o~
K°pl.p E B
X o4 ’3 b Cd d
[P By
2 -
05 PPy P eP3 PyeP3

4t
(mf + 252)2 PPz



57-

The resulting term logarithmic in F"Z is precisely what would be obtained by the sub-

stitution :

kup, lopy , PzePo P3ePy
R R

in the original expression,

et St
- Somtmm el
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Caption for Table 1.

The table contains the fractional radiative corrcctions for clectcon-croten
(e” - p) and positron-proton (¢ - p) scattering. A and B are oxperizments in vhich the
eloctron (or positron) is detected and A' and B! are experiments in vhich the proton
is detected. The rusults of this papcer are given by 8 , and those of Ref. 3 by 6*.

The experimental conditions for the various experimonts are

A(ar): E, 90, B, = 327, B, = 151, AE3 = 13,1 (Ap4 = 10)

!

3

!
1S
(&}
[
-
[

B(B"): E, = 5000, E —5638,1533 = 10 (A_p4 = 10)

o
I

3

where the energies and momenta are in McV,




